Each answer should be a number, ∞ , $-\infty$, or DNE (only if the other answers do not apply).

$$\lim_{x \to \infty} \frac{6}{2 - 7e^{-x}} = \frac{6}{2 - 0}$$

$$\lim_{x \to -\infty} \frac{\sqrt{5x^6 + 1}}{17x^2 - 2x^3} \cdot \frac{1}{x^2}$$

$$= \frac{1}{x^3} = -\frac{1}{x^6}$$

$$= \frac{17}{x^6}$$

$$= -\frac{17}{x^6}$$

$$= -\frac{17}{x^6}$$

$$= -\frac{17}{x^6}$$

[c]
$$\lim_{x \to 2} \frac{1+x}{4-2x}$$
 DIE (1)
$$\lim_{x \to 2} \frac{1+x}{4-2x} = -\infty$$

$$\frac{1}{2} \lim_{x \to 2^{+}} \frac{1+x}{4-2x} = -\infty$$

$$\frac{3}{0} = \frac{1}{2}$$

$$\lim_{x \to 2^{-}} \frac{1+x}{4-2x} = \infty$$

$$\frac{3}{0} = \frac{3}{0}$$

$$\frac{3}{0} = \frac{3}{0}$$

Let
$$f(x) = \frac{x}{1+2x}$$
.

SCORE: ____/8 PTS

[a] Find
$$f'(x)$$
.

$$| \lim_{h \to 0} \frac{x+h}{1+2(x+h)} - \frac{x}{1+2x}$$

$$= \lim_{h \to 0} \frac{(x+h)(1+2x) - x(1+2x+2h)}{h(1+2x+2h)(1+2x)}$$

=
$$\lim_{h\to 0} \frac{K + 2hx - 2hx}{K(1+2x+2h)(1+2x)} = \frac{1}{(1+2x)^2}$$

Find the slope-point form of the equation of the tangent line to the curve of f(x) at the point where x = 3. $f(3) = \frac{3}{7}$ $f'(3) = \frac{1}{49}$

$$y - \frac{3}{7} = \frac{1}{49}(x - 3)$$

The position (in inches) of an object moving in a straight line is given by $s(t) = \frac{t}{1+2t}$, where t is the time in seconds.

Find the instantaneous velocity of the object at time t = 4. Give the correct units for your answer.

Deter	mine if the function $f(x) = \begin{cases} 1 - x^3 + x^6, & \text{if } x < -1 \\ x - x^2 + x^5, & \text{if } x \ge -1 \end{cases}$ is continuous at $x = -1$.	SCORE:	/ 4 PTS
State In ad	your conclusion clearly, and justify using the definition of "continuous". dition, if it is not continuous, determine the type of discontinuity and justify using the appropriate definition.		
(1) LX	$\lim_{x\to -1^{-}} (1-x^{3}+x^{6}) = 3$ $\lim_{x\to -1^{-}} (1-x^{3}+x^{6}) = 3$ $\lim_{x\to -1^{+}} (x-x^{2}+x^{5}) = -3$ $\lim_{x\to -1^{+}} (x-x^{2}+x^{5}) = -3$ $\lim_{x\to -1^{+}} (x-x^{2}+x^{5}) = -3$	ED	
(1) (X	$(x-x^2+x^5)=-3$) $50 NOT CONTI$	N0007 	E D
0	BUT ARE NOT EQUAL, SO JUMP DISCONTINUITY	C	
- 1	ISUT ARE NOT EQUAL, SO JUMP DISCONTINUITY	2)	
The g	raph of $f(x)$ is shown on the right.	SCORE:	/6 PTS
[a]	Find all x -coordinates where $f'(x)$ is undefined, and explain briefly why.		
	DIX=-3 DISCONTINUITY	1	
	1) X=-2 VERTICAL TANGENT LINE,	91	
	DIX=-2 VERTICAL TANGENT LINE, DIX=1 WSP, MUST HAVE BOTH X-VALUE & PLEASON		
[b]	TO GET POINT	a so and	
[0]	oketen a graph of y (x) on the same axes.	GRADE	D BY MI
Using	complete sentences & proper mathematical notation, write the formal definition of "derivative (function)".	SCORE:	/1 PT
-	THE DERIVATIVE OF F IS I'M F(x+h)-F(x) GRA	HOED BY	YME
Using	complete sentences & proper mathematical notation, write the formal definition of "continuous (at a point)".	SCORE:	/2 PTS
f	IS CONTINUOUS AT a IF f(a) EXISTS,		
	lim f(x) EXISTS GRA	XDED E	BYME
	$\lim_{x \to a} f(x) = xists \qquad GRA$ AND $\lim_{x \to a} f(x) = f(a)$		
The ac	ge at which you can retire depends on how much money you add to your retirement account each month.	SCORE:	
Suppo	se $r = f(a)$, where r is your retirement age (in years), and a is the amount of money you add to your retirements of dollars).	irement accoun	t each month
[a]	What does $f'(3) = -12$ mean? Give the correct units for all numbers in your answer	DED BY	
	IF YOU ADD \$3000 TO YOUR RETIREMENT ACCOU	NT EACH	H MONT
	YOU COULD RETIRE 12 YEARS BARLIER FOR EACH \$ 1000 YOU ADDED BACH MONTH.	TAUDI	
[b]	Is there a value a_0 such that $f'(a_0) > 0$? Why or why not?		
	NO. IF YOU INCREASED YOUR MONTHLY DEPOSIT, YOUR RETIREMENT AGE WOULD ALWAYS	DECRE	FASE